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Factors which control the strength and toughness of a fibre-reinforced composite in terms of 
the role of interfacial parameters such as the interfacial shear strength, the interfacial coeffi- 
cient of friction and the matrix shrinkage pressure are reviewed. Techniques for determining 
the interfacial parameters, the stress distribution along the embedded fibre, and the mode of 
failure of the pull-out tests utilized in these techniques are considered. 

1. In troduct ion  
The study of interfaces in composite systems is con- 
sidered essential to the development of an overall 
understanding of the science and technology of com- 
posites. There are two objectives in such studies of the 
interface: to understand the physical nature and 
character of the fibre-matrix interface and to deter- 
mine how the interface affects the mechanical proper- 
ties, and secondly to develop stress/fracture criteria to 
predict the debonding phenomenon and to character- 
ize the composite in terms of interracial parameters 
which control the strength and toughness of the com- 
posite. 

The object of the present paper is to review the 
latter aspects of the interface. Issues such as the role of 
the interracial parameters in the mechanical proper- 
ties, the stress distribution along the embedded fibre 
and its effect on debonding, and techniques for evalu- 
ating the interfacial parameters will be considered. 
The single fibre pull-out test will be considered in 
detail as a review of the literature has shown that it is 
the only test which can potentially be utilized to 
determine certain interracial parameters. Although as- 
pects relevant to various fibre-reinforced composites 
are considered, the present review will focus on poly- 
meric composites and include short-fibre systems. 

2. M e c h a n i c a l  propert ies  of  c o m p o s i t e s  
The strength, modulus, mode of failure and fracture 
toughness of a composite are not only dependent on 
the properties of the fibre and matrix, fibre volume 
fraction, fibre orientation and the embedded fibre 
length (in the case of short-fibre systems), but also on 
the interfacial parameters of the composite. Interracial 
parameters include factors such as the interracial shear 
strength q, the interracial toughness Gi, the matrix 
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shrinkage pressure Po on the fibre, and the interracial 
coeff• of friction g. The influence of the above 
factors will be outlined. 

2.1. Strength of composite 
The theoretical strength of a short-fibre reinforced 
composite [1] is given by 

V "ciliVi (1  - -  lc 

+ Crm(1 - v~) (1) 

where Cyou is the ultimate strength of the composite, O-fu 
is the ultimate strength of the fibre, ~m is the matrix 
stress at failure, rl is the interfacial shear strength, C is 
the orientation efficiency, lo is the critical fibre length, 
Ii and lj are the sub-critical and super-critical fibre 
lengths, respectively, Vi and Vj are the fibre volume 
fractions of the sub-critical and super-critical fibre 
lengths, respectively, Vf is the overall fibre volume 
fraction, and r is the fibre radius. 

It can be seen from Equation 1 that the strength is 
affected by many parameters. The first two terms on 
the right of the above equation account for the varying 
short transfer lengths in short-fibre systems. In con- 
tinuous fibre systems, the equation reduces to the 
simpler rule-of-mixtures relationship. It has been 
shown [2] for short-fibre systems that the reinforce- 
ment efficiency q of aligned short fibres increases with 
fibre length I. When l/l c > 10, q approaches 95% of 
that of aligned continuous fibres (q approaches unity). 
It would therefore, seem that 95% of the strength of 
a continuous composite can be developed in a short- 
fibre composite provided l/lo > 10. However, in prac- 
tice, initiation of matrix failure at the fibre ends due to 
stress concentration severely reduces the strength of 
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the composite. This has been confirmed using both 
acoustic techniques [-3] and numerical finite-element 
methods [4]. It has also been shown [-5] that badly 
damaged fibres will break into small fragments at 
relatively low stresses and reduce the strength and 
modulus of the composite. 

The strength of the composite has been observed 
[6-8] to increase linearly with fibre volume fraction Vf 
as predicted by Equation 1. Systems with too high or 
too low Vf may deviate from this linear relationship 
due to fibre embrittlement of the matrix and fibre 
interaction, respectively. This phenomenon is more 
pronounced in a system with short fibre lengths and 
a weak fibre-matrix interface [8]. 

2.2. Toughness  of composite 
The toughness of a composite has been found [,%12] 
to be higher than that of the fibre or the matrix. One 
or more energy absorption processes which are not 
present in conventional materials must, therefore, 
exist in composite systems. The increase in toughness 
has been attributed to several fracture mechanisms. It 
has been proposed [13, 14] that work done against 
pull-out is a major contributor. Others [,15] have 
considered the energy required to debond the fibre 
from the matrix to be a major factor. 

Based on the above concepts, attempts have been 
made to improve the toughness without any sacrifice 
in strength in the composite. Most methods for in- 
creasing the toughness are based on promoting the 
occurrence of the fibre pull-out process. For example 
[16], fibres have been coated intermittently to pro- 
duce alternating strong and weak bonding. The 
strong bonding maintains the required strength while 
the weak bonding assists crack blunting by the 
Cook-Gordon [17] debonding mechanism and in- 
creases the fibre pull-out length. There have also been 
attempts [18] to coat the fibres with a viscous fluid to 
maximize the shear stress acting on the fibres during 
pull-out. Such a shear stress is strain-dependent, and 
a faster strain rate causes a higher interfacial shear 
stress. 

The benefits of using a "duplex" reinforcing mem- 
ber, consisting of a helical convoluted steel wire core 
shrunk in a hypodermic tubing, has also been investig- 
ated [-19]. The strength of the hypodermic tubing 
controls the strength of the "duplex" reinforcing mem- 
ber. Once the hypodermic tubing has been loaded to 
fracture, the helical convoluted steel wire core will be 
pulled out against the inner wall of the tubing. The 
high frictional forces generated between the tubing 
and the helical steel core during the pull-out process 
lead to higher toughness. However, none of the 
above attempts has produced satisfactory practical 
solutions. 

of water ingress on the properties of fibre-reinforced 
thermosetting polymers is well known. Water intru- 
sion into the interface in an untreated short-fibre 
thermoplastic system [22] can also cause the strength 
and modulus to decrease by 70 and 80%, respectively. 
On the other hand, an increase in the interracial 
strength leads to a substantial increase in the tensile 
strength and modulus of a short-fibre composite 
[-8, 233. 

The nature of the interface also has a large influence 
on the mode of failure and the toughness of the 
composite. Theoretical analysis based on the strain 
energy release rate [--243 of the pi"opagation of a penny- 
shaped crack in a composite has been conducted. Such 
an analysis showed that a strong interface would 
promote crack propagation across the fibres, whilst a 
weak interface would promote failure by fibre debond- 
ing and pull-out. 

An increase in the interracial shear strength ~ is 
accompanied by a reduction in the critical fibre length 
lc. Theoretical analysis of the fracture toughness [13, 
14, 25] showed that the work done against pull-out 
increases with I c and the frictional shear stress ~f at the 
interface. The value of ~f is governed by the matrix 
shrinkage pressure Po on the fibre and the interfacial 
coefficient of friction It. The crucial effect of the above 
parameters on toughness has been emphasized by 
studies [26, 27] which indicated that fibre pull-out was 
by far the largest factor contributing to the fracture 
toughness of a fibrous composite. 

2.4. Methods for evaluating the interfacial 
parameters 

Although the interracial strength has been evaluated 
from the stress-strain behaviour of a composite 
[,1, 28], the results were strongly dependent on such 
factors as the specimen geometry, the fibre volume 
f{action and the fibre aspect ratio. The above analysis 
is based on a pull-out model which assumes a constant 
shear stress along the fibre [29]. However, in a short- 
fibre composite, the shear stress distribution is not 
constant due to the existence of a stress transfer 
length, stress concentrations arising from irregularly 
shaped fibre ends [-30] and the interaction of the stress 
fields between adjacent fibres [-31]. 

The principal techniques for determining the inter- 
facial shear strength are the fragmentation test, the 
microindentation test and the pull-out test. The ad- 
vantage of the pull-out test is that it is possible [32] to 
determine other interfacial parameters such as the 
interfacial coefficient of friction, It, and the matrix 
shrinkage pressure, Po, from the pull-out data. Hence, 
although each of the above tests will be considered, 
only the pull-out test will be evaluated in detail. 

2;3. Role of interfacial parameters 
The interfacial parameters have a significant effect on 
the properties of a composite. A weak interface drasti- 
cally reduces the off-axis strength, the ftexural strength 
[20] and the compression strength [-20, 21]. The effect 

2.4. 1. The fragmentation test 
The interfacial shear strength is frequently evaluated 
by means of the fragmentation test [33]. This method 
is based [34] on the tensile pulling of a totally embed- 
ded single-fibre specimen in the direction of the fibre 
axis. Stress transfer between the matrix and the fibre 
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causes the tensile stresses along the fibre to build up. 
The tensile stresses are a maximum around the centre 
region of the fibre [35] beyond the transfer lengths of 
the system. Typically, the fibre fractures within this 
centre region during loading. Further increases in the 
tensile load will result in fragmentation of the fibre. 
When the length of the fibre fragments have reduced 
to a critical value, no further breakage will occur but 
the interface will fail in shear. If the fibre strength at 
the critical length L c is known, the interfacial shear 
strength can be calculated from the average length of 
the fibre fragments I, using the relationship 

(3"fu r 
x i -  la A(p) (2) 

where eye, is the fibre fracture strength, I a is the average 
length of the fibre fragments, and A(p) is a correction 
factor which can be estimated [361 using a Monte 
Carlo simulation. 

However, it should be borne in mind that the 
strength of the fibre varies with its length [37]. The 
critical fibre lengths of some systems are so short [38] 
that direct measurement of their tensile strength is 
impossible. Although the problem of measuring the 
fibre strength at the critical length can be avoided by 
extrapolating the plot of fibre strength against fibre 
length obtained at practical lengths [34], the accuracy 
of the result is in doubt due to the lack of data at short 
fibre lengths. An alternative approach [36] is to utilize 
the Weibull-Poisson model to obtain the fibre frac- 
ture strength, %u, such that 

C~ru = ~eu.o~ (3) 

where Po is the shape parameter for fibre strength and 
~eu and ~eu(~o~ correspond to the Wcibull scale para- 
meters for the strength of the fibre at lengths I and l o, 
respectively. The Weibull distribution W(rJ) of the 
fibre fracture strength of fibres of a given length lo is 

W(cr) = 1 - e x p ( - F  p~ 

where F = c~/%u(~o ). 
Most of the existing studies are limited to work on 

transparent matrix composites where the critical frag- 
mentation lengths could be measured either directly 
optically or by using photoelastic techniques. More 
recently [39], the acoustic emission technique has 
been used to measure the fragmentation lengths in an 
E-glass epoxy and Kevlar epoxy systems. The use of 
acoustic emission will extend the applicability of the 
test to non-transparent systems. 

The fragmentation test suffers from two main dis- 
advantages. Firstly, the failure strain of the matrix 
must be much larger (more than three times) than the 
failure strain of the fibre to promote multi-fragme.nta- 
tion of the fibre. This requires the use of matrices 
which can undergo large deformations. Consequently, 
commercial resins utilized in actual composite systems 
which typically have low strains to failure cannot be 
used for the test. Therefore, the interracial shear 
strength determined is not directly applicable to the 
actual composite system. Secondly, in addition to the 

difficulty of determining the fracture strength of very 
short fibre fragments, the strength and failure strain of 
the fibre may be affected [40] by the surrounding 
matrix. The coating or embedding matrix can inhibit 
fibre fracture [40] which initiate from surface flaws. 
The magnitude of this effect is dependent on the type 
of matrix or embedding resin. Therefore, it is import- 
ant to utilize the actual fibre and resin of a given 
composite system to determine the interracial shear 
strength zi. 

The fragmentation test has recently been reviewed 
critically [41]. It has been shown [41] that Equation 3 
is based on the assumption of a fully elastic model and 
is therefore not generally applicable to many practical 
composite systems. In addition, such an assumption is 
not realistic since the concept of a critical transfer 
length does not exist. Hence, theoretically, fragmenta- 
tion would proceed and the fibre length would de- 
crease as long as the applied strain on the specimen 
was increased. This is contrary to what is observed in 
practice. Instead, a partially elastic model E41], which 
accounts for inelastic deformations near the fibre ends, 
when the shear stress reaches either the yield strength 
of the matrix or the shear strength of the interface, 
must be utilized. 

2.4.2, The microindentation test 
In this technique, a pyramidal microhardness indenter 
is used to debond a fibre within a slice or section of 
composite material. The force from the indenter is 
applied directly to the fibre end. The indenter is fitted 
with an extensometer which serves as a load trans- 
ducer. The measured debonding force could be used to 
calculate the interracial shear strength by using a 
shear-lag model for push-out. This test was initially 
developed for fibre-reinforced ceramics [42, 43] but 
has been extended to other fibre-matrix systems. 
Detailed finite-element analysis of the test has also 
been done [43]. Highly automated systems for testing, 
data acquisition and analysis are available [44]. This 
technique has also been reviewed elsewhere [41]. 

When a thin slice of composite is used, the push- 
through test is obtained. The push-through test has 
been used to investigate the effect of silane coupling 
agents on the interracial shear strength in E-glass 
epoxy systems [45]. The use of acoustic emission 
methods [45] to detect the onset of debonding has 
also been attempted. However, large-amplitude emis- 
sions which can be attributed to crack formation in 
the fibre during push-out have made interpretation of 
the acoustic emission data rather difficult. 

The advantage of the microindentation test is that 
practical composites can be sliced and tested. How- 
ever, accurate interpretation of data from tests in 
which the fibres are not aligned vertically is a problem. 
This is because the relative frictional sliding resistance 
is dependent on the fibre alignment. Discernment 
must also be exercised in selecting the fibres for the 
test, since fibre bundle effects within the sliced com- 
posite would also contribute to scatter in the results. 
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2.4.3. The pul l-out  test 
The single-fibre pull-out test is by far the method most 
commonly employed for determining the interracial 
parameters. The pull-out test will be evaluated in 
detail in a later section. Pull-out tests have been 
performed on many systems including the steel 
wire-rubber matrix [46-48], the steel wire-cement 
matrix [49-51], the glass fibre-cement matrix [52], 
the polypropylene fibre-cement matrix [53], the 
metal fibre-epoxy matrix [54-56], the glass 
fibre-thermosetting plastic matrix [57], the steel 
wire-polycarbonate matrix [55] and the glass 
fibre-polypropylene matrix [58] systems. 

The microbond test [59] is essentially a miniature 
pull-out test. In this test, droplets of resin are allowed 
to cure or solidify on small fibres which are available 
commercially. The resin is supported and the fibre is 
pulled through the resin droplet. The interracial shear 
strength is determined from the pull-out force. The 
attractiveness of the microbond method lies in the 
simplicity of the specimen preparation. However, 
there are a number of disadvantages. The resin drop- 
lets must necessarily be small (compared with the 
critical length), otherwise fibre fracture would occur 
readily. Other considerations include the fact that the 
shape (usually ellipsoid) of the droplet is important 
since droplet shapes which deform excessively would 
not lend themselves to accurate analysis. This method 
is not applicable to matrices which are soft. Moreover, 
the interfacial shear strength is calculated on the 
assumption that the stress is distributed uniformly at 
the interface. The microbond test will not be con- 
sidered in detail in this review. 

In contrast to the fragmentation test and the micro- 
indentation test which can only determine the inter- 
facial shear strength, the single-fibre pull-out test has 
been used to evaluate at least four interracial para- 
meters. These parameters include the interfacial shear 
strength z i [51, 57], the interfacial fracture toughness 
G i [57, 60], the matrix shrinkage pressure Po [58] and 
the interracial coefficient of friction la [54, 55, 61]. 
There is little work on glass fibre-reinforced thermo- 
plastic systems despite the fact that this class of com- 
posites has great technological importance [62]. 

Most pull-out tests utilize fibres of constant dia- 
meter, and different interfacial parameters are evalu- 
ated [57, 60] from tests with different geometry and 
test configuration. For example, the matrix shrinkage 
pressure of epoxy on glass fibre can be determined 
[63] using photoelastic methods. However, such a 
method for determining P0 is limited to photoelastic 
materials only. In contrast, a recent method [58] for 
determining the interfacial parameters involves the 
pull-out testing of slightly tapered glass fibres. The 
latter technique allowed assessment of the interfacial 
parameters from one type and set of pull-out tests. 

2.4.4. Comparison o f  data from different 
methods  

In the absence of a standard for determining the 
interfacial shear strength, the reliability, reproducibil- 
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ity and consistency of results from different workers 
obtained for a given composite system utilizing a 
given technique must be examined. The paucity of 
data does not allow the newer microindentation test 
to be evaluated. It has been reported [64] that there is 
general to fair agreement of data from fragmentation 
tests on carbon AS4-epoxy systems and carbon 
AS4-PEEK systems. Less satisfactory agreement was 
reported for pull-out data for untreated HT 
carbon-DGEBA systems. It was reported [64] that 
the interfacial shear strengths determined from pull- 
out tests were dependent on the mode of stress ap- 
plication. This observation will be outlined and ex- 
plained in a latter section. Hence, it is imperative that 
the mode of loading must be similar for pull-out data 
to be comparable and consistent. 

It is also important to know whether data obtained 
from the different methods are comparable for a given 
composite system. Comparison of data from pull-out, 
fragmentation and microindentation tests on Kevlar, 
E-glass and carbon systems [65] revealed that only 
qualitative comparisons can be made. In contrast, 
agreement between data from pull-out and fragmenta- 
tion tests has also been reported by Jacques [64]. 
Clearly, more work must be done before any firm 
conclusion can be drawn. Any comparison of data 
from the different methods would also be affected by 
the appropriateness of any assumption made in calcu- 
lating the value of zl. The consequence of comparing zl 
obtained from the fragmentation data with large frag- 
mentation lengths and z~ obtained from pull-out tests 
will be highlighted. 

3. Stress distribution along the fibre 
3.1. Introduction 
Apart from the intrinsic properties of the interface or 
interphase, the stress distribution along the embedded 
fibre also plays an important role in the overall per- 
formance of the composite. Regions of shear stress 
concentration will develop at the interface because of 
the differing properties of the fibre and matrix. Shrink- 
age pressure also develops at the interface on curing or 
cooling of the matrix, as a result of differential shrink- 
age due to a difference in thermal expansion coeffic- 
ients of the two constituents. 

The stress distributions along a short fibre are 
strongly influenced by the properties of the fibre and 
matrix, and the interface or interphase. Stress concen- 
trations near the fibre ends can cause partial debond- 
ing of the interface or shear flow of the matrix. In the 
case of randomly oriented fibre composites, fibre mis- 
alignment and interaction due to  overlapping of 
neighbouring fibres complicate the stress distribution 
further. 

A number of theories have been put forward to 
predict the stress distribution along the fibre. Most of 
these are based on the shear lag principle. Results from 
experimental approaches suggest that most theories 
provide a good fit in the middle section of the fibre but 
underestimate the magnitude of stress concentration 
near the fibre ends. Nevertheless, these theories are 



very useful in the development of an understanding of 
stresses along the fibre. 

3.2. Theoretical pu l l -ou t  models 
The shear lag theory was initially utilized by Cox [35] 
to determine the stresses along a discontinuous fibre 
embedded in a matrix. The fibre and the matrix were 
assumed to be elastic. The bond between the fibre and 
the matrix was assumed to be perfect and load transfer 

~ 2  

Of and xx become 

Pm ( cosh(~,x/df) ) 
O f  = Af 4- (ArnEm/Ef) 1 cosh(X1/df) (8) 

X PrasinhOvx/df) 
zx = - (9) 

4 [Af + Am(Era~El) ] cosh(Xl/df) 

where Pm is the toad on the matrix, A m is the matrix 
cross-sectional area, df is the fibre diameter, 21 is the 
fibre length, x is the distance along the fibre axis 
measured from the mid-point of the fibre, and 

21/2(Gf/Ef)[l 4- (AfEf/AmEm) ] ) 
i21 /2  - -  1) 4- (Gf/Gm){[(Am/Af) 4- 231/2 - 21/2} 

through the fibre ends was neglected. When  such 
a system containing a fibre of length l is stretched to 
a strain ~, the load transferred from the matrix to the 
fibre at any distance x from the fibre end can be 
written as 

dP 
- H ( u  - v )  (4) 

dx 

where P is the load on the fibre, u the displacement of 
a point on the fibre-matrix interface under the applied 
load, v the displacement at the same point in the 
absence of the fibre, and H [66] is 2nGm/ln(rm/r ) where 
Gm and rm are the shear modulus and radius of the 
matrix, respectively. It can be shown that the ex- 
pressions for the tensile stress along the fibre c~f, and 
the shear stress at the interface zx, are given by 

( E l -  E,n)Cyc ( cosh{[3[l/2 - x ]} )  
of - ]gm 1 -- cosh([3 l/2) (5) 

(E f  - -  Em)Afl; (13 sinh {13 [//2 _~- x]} ) 
zx = -2~r \ cosh031/2) (6) 

where Af is the cross-sectional area of the fibre and 
= ( I - I / A f E ) I / 2 .  

The above model assumes excellent adhesion be- 
tween the fibre and the matrix. This, however, is not 
true for some fibre-reinforced thermoplastic systems. 
In such systems [67], a poor interfacial bond exists 
and high stresses at the fibre ends would cause inter- 
facial debonding. Load transfer is, therefore, due to 
friction induced by any relative movement between 
the fibre and the matrix. The tensile stress along the 
debonded fibre can readily be determined where 

2gPo 
O f  - -  - -  x (7) 

r 

where x is the distance from the fibre end. 
The above models do not account for deformation 

of the matrix away from the interface which may have 
an effect on the stress transfer. Dow [68] proposed a 
model similar to that by Cox [35], but assumed no 
contact with the matrix at the fibre ends. In addition 
to the assumptions in Cox's analysis, Dow assumed 
that the displacement of the matrix along the fibre 
direction increased linearly with the perpendicular 
distance from the axis of the fibre. The expressions for 

It has been suggested that an "interphase" layer 
which has the "average" properties of the composite 
may form on the fibre surface. A model which 
accounts for the presence of such an interphase 
has also been developed [69]. Three assumptions were 
made in this model. Firstly, perfect bonding at the 
fibre-interphase and matrix-interphase interfaces was 
assumed. Only the fibre and interphase were load- 
bearing, and the matrix layer was assumed to carry 
only shear stress. Based on these considerations, the 
expressions for the tensile stress on the fibre of and the 
shear stress at the interphase-matrix interface z~ are 

2 ( c o s h ( q o X )  ) ocr a Ef l 
of = E,(r2a ~ ~m) -4- Ef r2 cosh(rlo/) 

(10) 

Gm o~r 2 sinh (qoX) 
= qoEa(r m _ r)(r 2 _ rim)cosh(qo/) (11) 

1~ x 

where 

qo 2 = 2 Em(rm __ r)r 1 + Ea(rZa --  rZm) 

E a is the modulus of the average material and G is the 
outer radius of the average material block. 

The above theories are concerned with stresses 
within an elastic matrix. However, in some systems the 
matrix may be in a plastic state. In the latter case [29], 
shear flow of the matrix is assumed to occur when the 
interfacial shear stress reaches the yield stress of the 
matrix. This initial analysis was developed for a cop- 
per matrix which had a very low yield stress so that 
the matrix could be considered to be totally plastic. 
The shear stress at the interface was, therefore, con- 
stant and equal to the shear strength of the matrix Zmc. 
The tensile stress on the fibre of can readily be shown 
to be 

Of = 2Zmc X- (12) 
r 

In some composite systems of stiff fibre in a metal 
matrix of low yield stress, plastic flow of matrix at the 
interface will occur near the fibre ends while the 
matrix in the middle section remains elastic. There- 
fore, both the above theory [29] and Cox's theory 
[35] can each describe only part of the interracial 
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stress distribution in such a system. These two theories 
can, however, be combined and extended [70] to 
include the load transferred at the fibre ends, In such a 
model, the tensile stress on the fibre ~f in the region 
where the matrix is still in an elastic state consists of 
three parts: (i) a step increase across the fibre ends, (ii) 
a linear increase due to shear flow of matrix near the 
fibre ends, and (iii) an exponential increase in the form 
similar to Cox's theory [35] in the middle section of 
the fibre. The expression for stress in the fibre becomes 

21p'Cm 21:m( cosh(13x) ) 
(3"f = O" m + + 1 -- 

r ~ -  c o s h [ ~  ~ lp)] 

x coth [13(L - /p) ] (13) 

where ~m = 2"Cm, 2L is the embedded fibre length, lp is 
the length of the shear flow region, x is the distance 
along the fibre axis as measured from the centre of the 
fibre, 13 2 = H/Efrcr 2, and H is the constant in Cox's 
equation. 

3.3. C o m p a r i s o n  of the  t h e o r i e s  
Three of the above theories, Equations 4 [35], 8 and 9 
[67], and 10 and 11 [69] are based on the shear lag 
principle. These theories can be summed up by two 
general equations for ~f and rx where 

( c~ 
( ~ f  = K1 1 -  (14) 

cosh [(l/2) K 2 ] 

/cosh { E(1/2) - x] K2) ) 
�9 , = K 3 \   /2)K73- . ( 1 5 )  

The constants KI ,  K2 and K a are different for each 
theory due to the different assumptions made and 
minor differences in the configuration of the models. 

Similarly, Equations 7 and 12 are of the same form. 
However, the former considers the constant shear 
stress to be due to the interfacial friction which arises 
from ineffective bonding, while the latter attributes the 
constant shear stress to shear flow of the matrix. 

All the above theories were developed for unidirec- 
tional short-fibre reinforcement. Very often, short- 
fibre reinforced thermoplastics with randomly or i -  
ented fibres are developed in order to achieve isotropic 
mechanical properties. If a fibre is not oriented par- 
allel to the applied load, the stress distribution can be 
very different [71]. 

Interracial stress distributions have also been ana- 
lysed experimentally using different techniques. For  
example, resonance Raman spectroscopy [72] has 
been utilized to measure the strain distribution along 
a single-crystal polydiacetylene (PDA) fibre in a uni- 
axially loaded single-filament model composite of 
PDA in epoxy. The Raman technique has also been 
used to characterize carbon fibres [73] and for map- 
ping the load transfer profiles from fibre ends in 
PBT~epoxy [74] and aramid-epoxy [75] systems. 
The results from the fully embedded fibres agreed 
qualitatively with Cox's theory. However, the stress 
distribution [73] around the broken fibre fragments 
did not conform to the profile predicted by Cox. This 
also brings into question the accuracy of the inter- 
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facial shear stress calculated using the fragmentation 
method which is based on the assumption of a shear- 
lag analysis. 

Most theoretical analyses [35, 68, 69] ignore the 
load transferred across the fibre ends. This leads to an 
underestimation of the stress concentration at the 
fibre ends. Finite-element analysis has shown [76, 77] 
that load transfer increases the stress concentration at 
the fibre ends by more than 20%. The distribution of 
stress at the fibre ends is also dependent on the 
geometry of the fibre tip [76], and a gradually tapered 
end reduces shear stress concentration. 

The photoelastic technique is another method for 
determining the interracial stress distribution experi- 
mentally. Such work on a two-dimensional model of 
aluminium fibre in an epoxy resin [30] revealed that 
the magnitude of the interracial shear stress at the fibre 
ends was three times higher than that predicted from 
Cox's theory. Nevertheless, away from the fibre ends, 
the theory predicted values close to the experimental 
results. Similar photoelastic experiments on a model 
system of boron fibre in an epoxy system [31] revealed 
that residual shrinkage stresses in the matrix reduce 
the stress concentration although they may affect the 
load transfer. In a multi-fibre model system, the stress 
concentration is greatly affected by interaction be- 
tween adjacent fibres. Intermediate overlapping seems 
ideal for reducing interracial stress concentration. 
However, very high stress concentration arises when 
the regions of high stress are brought into close prox- 
imity. Similar results from a theoretical viewpoint 
have also been obtained [78]. 

It has been shown [79] that a change in the shape of 
the fibre tip affects the position of maximum stress but 
has little effect on the overall stress distribution. The 
point of maximum stress concentration in a square- 
ended fibre system is located at a short distance from 
the fibre end, whilst that in a round-tip fibre system is 
at the fibre tip. However, there is little scope for 
improvement in this particular aspect since the shape 
of the fibre ends in real composite systems cannot be 
controlled. 

3.4. Other considerations 
Interphases in composites will also affect stress trans- 
fer and thus the interracial stress distribution in com- 
posites. The interface and interphase of a fibre- 
reinforced composite are physically different in nature. 
The former is the boundary at which the reinforce- 
ment and the matrix meet, while the latter is either a 
layer of matrix material which has a different morpho- 
logical structure from the bulk matrix due to the 
presence of the fibre surface, or a layer of mixed 
material of two phases which are in contact at the fibre 
surface. The latter type of interphase exist in com- 
mercial composites since the fibres normally have 
either a protective coat of binder (or sizing) or a coat 
of silane coupling agent. As the fibre and the matrix 
material interact through the coating on the fibre, the 
properties of the coating will affect the microscopic 
and macroscopic properties of the composite. The 



subject of binder coatings and coupling agents is 
outside the scope of the present review. 

The interphases cited in the literature generally 
consist of a fairly distinct coat of binder/sizing 
[80-82] or coupling agent [-83] on the fibre. It has 
been recognized [84] that some inter-diffusion may 
occur at the coating-matrix interface so that the 
interphase region is diffused and larger than the ori- 
ginal thickness of the coating on the fibre. However, 
the exact nature of the interphase may be more com- 
plex [85]. Most of the existing work on interphases 
concerns epoxy or other thermosetting polymer 
matrix systems. 

The interphases in thermoplastic fibre composites 
are the transcrysta!!ine regions which develop on the 
fibre surface. Such transcrystalline interphases have 
been observed in carbon fibre-nylon 6 and glass 
fibre nylon 6 systems [86], Kevlar-polypropylene 
[87], Kevla~nylon 66 [88], glass fibre-HDPE [88], 
and glass fibre-PPS and carbon fibre-PPS systems 
[89]. Most of the above studies were done on a hot 
stage. It is important to treat hot-stage results with 
care since transcrystalline growth which was present 
in hot-stage studies on carbon fibre-nylon 66 and 
Kevlar fibre-nylon 66 systems [88] did not exist in the 
injection-moulded samples. This was observed despite 
the fact that transcrystalline growth does occur in 
injection mouldings. 

A different type of interphase in thermoplastic 
systems has been reported [90] in both clean glass 
fibre polypropylene composite and silane-treated 
glass fibre-polypropylene composite. The interphase 
region in the above silane-treated glass fibre-poly- 
propylene composite contained two distinct layers. A 
distinct layer of interphase material existed on top of 
the silane layer on the treated glass fibre. Hence, 
interfaces existed between the glass fibre-silane, 
silane-interphase and interphase-polypropylene 
layers. This is the first time [90] that a physically 
distinct layer of interphase material other than the 
transcrystalline layer has been reported in the literat- 
ure. Transcrystalline growth also existed [90] in the 
water-quenched samples. None of the existing models 
accounts for the presence of so many layers and 
interfaces in the interface region. 

The presence of silane agglomerates on the treated 
fibre surface [90] may further affect the microstress 
distribution in the interface region. Shrinkage arte- 
facts [91] at the interface in reinforced thermoplastics 
with poor adhesion between the fibre and the matrix 
also change the nature of the interfacial stress distri- 
bution. 

4. The single-fibre pull-out test 
4.1. Introduction 
The pull-out process in composites makes a large 
contribution to its toughness [9, 13, 25]. This has 
encouraged attempts to improve the toughness by 
promoting the pull-out process during failure, and 
efforts to understand the dynamics of the pull-out 
process through the single-fibre pull-out test. The 
dynamics of the pull-out process and the work done 

against the frictional stress during fibre pull-out are 
greatly influenced by interfacial parameters such as 
the interracial shear stress ri, the interfacial fracture 
energy Gi, the interracial coefficient of friction ~t, and 
the matrix shrinkage pressure P0 on the fibre. 

The single-fibre pull-out test is most extensively 
used for studying the dynamics of the pull-out process 
because of its simplicity (there are fewer unknown 
factors than in a real composite system, and the single- 
fibre pull-out curve shows distinct regions of the pull- 
out process) and versatility (can be used to evaluate 
a number of interfacial parameters). Various theories 
have been developed to predict the load required to 
debond the fibre from the matrix in a single-fibre pull- 
out test. These theories are either based on the max- 
imum interracial shear stress criterion or on the inter- 
facial fracture energy criterion. 

4.2. Test configuration 
A typical single-fibre pull-out test specimen usually 
consists of a fibre partially embedded in a block of 
matrix as shown schematically in Fig. 1. The protru- 
ding end of the fibre is gripped and pulled during 
testing. The test can either be performed with the 
matrix supported at the fibre emergent end (position A 
in Fig. 1) or at the opposite end to the fibre (position B 
in Fig. 2). Usually there is a certain fibre free length Lf  

(see Fig. 1) between the matrix and the grip. In the case 
where Lf = 0, the fibre is said to be fully supported. It 
is important to maintain a small and constant Lf. If Lf 
is large, the release of stored elastic energy in the fibre 
due to reduction in the stress immediately after 
debonding will make a large contribution to pull-out 
of the fibre. This has to be taken into account in the 
ensuing analysis. A very large L r may sometimes lead 
to catastrophic debonding. 

4.3. Character is t ics  of the  pu l l -ou t  curve 
The plot of pull-out force Fp versus displacement x of 
a stiff fibre in a polymeric matrix generally consists 
of three parts [55, 92,93] as shown in Fig. 2. This 
includes (i) region I, where Fp increases linearly up to a 
maximum value Fd at which complete debonding of 
the fibre occurs; (ii) region II, where a sharp drop of Fp 
from F a is followed by a few oscillations due to stick 
and slip of the fibre; and (iii) region III, where the force 
sustained by friction gradually decreases as the fibre is 
progressively pulled out. 

B 

Matrix Grip 

Fibre Fibre 
embedded emergent 

end end 

Lf  

Figure 1 Schematic representation of a single-fibre pull-out test 
specimen (fibre diameter = 2r, matrix block diameter = 2rm). 
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TABLE I Summary of theoretical models 

Model Shear stress distribution Constant 

% Fp (cosh(cqx) ~ _ ( 2G i y/z 

II % H 1 =agFp(c~ % = [  (~-eE f 
27zr \sinh(%L) / 

~3Fp(cosh(t~3x)~ _( H ~1/2 
III % = 2rcr \sinh(%L) / a3 - k A Y /  

Am Em 

Pull-out displacement 

Figure 2 General characteristics of the load-displacement curve for 
a single-fibre pull-out test. 

In some systems, the interface remains intact and 
debonding initiates and propagates rapidly to cause 
complete debonding of the interface at the end of 
region I. In other systems, such as the silane-treated 
glass fibre-polypropylene system 1-94], the debonding 
crack initiates around the half-way point and propa- 
gates within this region. Region I! is a transition 
region where the maximum force for complete de- 
bonding Fa reduces to a value required to extract the 
debonded fibre from the matrix. A relaxation in strain 
energy in the matrix and fibre accompanies this reduc- 
tion in force. The striations or oscillations in region II 
are due to stick and slip between the fibre and the 
matrix during the transition from a crack debonding 
phase to a pull-out phase, which occurs while the 
specimen is being strained in the testing machine. 

The size of each of these regions is dependent on the 
interfacial parameters of the composite system under 
consideration. Systems with a higher interfacial shear 
strength ~i will have a plot with a steeper slope in 
region I and a larger Fo will be obtained. Composite 
systems in which the frictional shear stress zf (stress 
between the debonded fibre and the matrix during 
fibre extraction) is only slightly lower than zl will 
exhibit a very small drop in region II. This has indeed 
been observed 1,95] in a glass fibre-polypropy!ene 
system. Composites with higher values of either P0 or 
la will have a region III of larger area, which can be 
attributed to greater work done against frictional pull- 
out. Such composites have an increased toughness. 
Therefore, the change in shapes and sizes of regions I, 
II and III gives an indication of the way in which Ti, zf, 
Po and la vary between different composite systems. 
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TABLE II Parameters for a glass fibre polypropylene system 

E m (GPa) Ef (GPa) Vm Vf r m (mm) r (mm) L (mm) 

3.4 70 0.35 0.22 2.5 0.3 10 

4.4. Longitudinal interfacial shear stress 
distribution 

A knowledge of the shear stress distribution along the 
fibre embedded length in a single-fibre pull-out speci- 
men is important, since the debonding crack initiates 
at the position where the shear stress approaches the 
interracial shear strength. Some previous work [93, 96, 
97] has utilized Cox's 1-35] shear lag principle to 
determine the stress distribution along a totally em- 
bedded fibre. In order to facilitate comparison, the 
above three theories were re-derived using the nota- 
tions shown in Fig. 1. The results are as listed in 
Table I where H is the constant in Cox's analysis, b i is 
the effective thickness of the interracial region, Gi is the 
shear modulus of the interracial region, r m is the radius 
of the matrix block, G m is the shear modulus of the 
matrix, and A m and Af the cross-sectional area of the 
matrix and fibre, respectively. 

It can be seen from Table I that the equations from 
the above theories have exactly the same form and 
differ only in their constant terms %, % and %. 
Consider a system which has the parameters shown in 
Table II under a pull-out force of 10 N. The theoret- 
ical interracial shear stress distributions predicted by 
the above theories are as shown in Fig. 3. It can be 
seen from Fig. 3 that theory I predicts the highest 
stress concentration while the results from theories II 
and III are similar. 

4.5. Debonding crack initiation 
It can be seen from Fig. 3 that all the above three 
theories predict that the debonding crack will initiate 
at the fibre emergent end, since they predict a max- 
imum shear stress concentration at x - - L .  The de- 
bonding crack will then propagate towards the fibre 
embedded end. This is true if the pull-out test is 
executed with the matrix block supported at the fibre 
emergent end [92]. 

However, debonding has been reported to initiate at 
both the fibre emergent end and at the fibre embedded 
end when the pull-out test is performed by gripping 
the opposite end of the specimen. For example, crack 



_ 

13_ 

3 

2 

0 I 

0 2 

I 

z, 6 10 
DistQncr x ( m m )  

Figure3 Interracial shear stress distribution for a glass 
fibre polypropylene system based on models I, II, and III in Table I. 

initiation has been observed at the fibre emergent end 
in a nickel wire-epoxy system [56], while debonding 
crack initiation at the fibre embedded end has been 
reported in a steel cord-rubber  model [98-1. Further- 
more, a two-stage debonding process has been re- 
ported [99] in a glass fibre--epoxy system where the 
debonding crack first initiated at the fibre embedded 
end. This was followed by initiation of a second 
debonding crack at the fibre emergent end. The above 
observations imply that the point of interracial shear 
stress concentration depends not only on the testing 
configuration but also on the properties of the fibre 
and the matrix. 

4.6. Max imum interfacial shear stress criterion 
for debond ing  

The debonding force, F a, required to extract a stiff 
metal wire from a soft metal matrix [29] has been 
observed to be a linear function of the embedded 
length, L, of the wire. This is in agreement with 
separate work [100] on a phosphor-bronze wire- 
plasticized epoxy system. The shear stress along the 
fibre embedded length in the above system was as- 
sumed to be constant, due to shear flow of the soft 
metal matrix and to the relatively constant shear 
strain of the rubber matrix. The slope of the plot of Fd 
against L was considered to be the strength of the 
interface, "c i, where 

dFd 
-- 2nrz  i (16) 

dL 

In the case of elastic matrices, however, the shear 
stress distribution varies along the fibre embedded 
length L [93, 96, 97, 101] so that Equation 16 is not 
applicable. The relationships between Fa and L de- 
rived from theories based on the maximum shear 
stress criterion have been reviewed elsewhere [102]. 
Sometimes [96, 101] catastrophic complete debond- 
ing occurs immediately after the debonding crack has 
initiated at the region of maximum stress concentra- 
tion. In such a situation, the pull-out force for com- 
plete debonding is given [101] by 

Fa _ 2nr~j tanh(~L) (17a) 

where c~ = (2H/rEO 1/2 and H is the constant in Cox's 
analysis. Equation 17a can be rearranged to give 

ri tanh (~L) 
T m a x  - -  (17b) 

czL 

where q~max = F a / 2 n r  L is actually the average stress on 
the fibre. 

It can be seen from Equation 17a that F d increases 
rapidly at small L but levels off to a constant value, F a 
= 2nrz i /~ ,  as 1 is increased further. This implies that 

complete debonding can take place even when L is 
very large provided that the ultimate tensile strength 
of the fibre is higher than 2nr~i/~.  

The magnitudes of ~i and rmax have been determined 
[103] for two carbon fibre-epoxy systems using a fully 
supported fibre specimen configuration (where one 
end of the fibre is embedded in the matrix block). The 
value of r max was dependent on the embedded length l 
and approached ~i when I was very small (1 < 30 p-m) 
[103]. The interfacial shear strength ri for the two 
composite systems was 123.9 and 174.2 MPa, respect- 
ively, while z ma~ (for I > 200 p.m) was 15 and 12 MPa, 
respectively. This compares with ~i values of 15 to 
26 MPa utilizing the fragmentation method (fibre 
fragment lengths of 280 to 1700 p-m), and z~ values of 9 
to 55 MPa from the pull-out method (pull-out lengths 
of 60 to 400 p-m) as obtained by other workers [103] 
for similar carbon-fibre systems. The above results 
suggest that accurate values of r~ can only be obtained 
if the fragmentation lengths and pull-out lengths are 
very small (l < 30 p-m in this case). Otherwise, the 
interfacial shear strength values determined are really 
r max. Such work has to be extended to other composite 
systems. Nevertheless, the work [103] indicates that ~ 
is more likely to be determined from pull-out tests and 
that due consideration has to be given to the fibre 
embedded lengths and fibre aspect ratios used. 

Debonding can also be considered a gradual pro- 
cess such that the interracial friction in the debonded 
area can be taken into account [52, 97]. Such analysis 
assumes that debonding will initiate at the position 
where the shear stress approaches the shear strength 
of the interface. An increase in the pull-out force, Fp, 
will cause the debonding crack to propagate and 
create a debonded region. As the debonded crack 
continues to propagate, the bonded area will decrease 
while the debonded area will correspondingly in- 
crease. Consequently, the resistance against pull-out 
due to the bonded region will decrease while the 
frictional force generated in the debonded region in- 
creases. 

In systems where the fibre embedded length is long 
and at the early stage of any debonding process, the 
increase in friction in the debonded area will be 
greater than the drop in load-bearing capacity in the 
bonded region. Therefore, the total resistance against 
pull-out will increase as the debonding crack propa- 
gates. The debonding crack grows under the action of 
the applied load, and crack propagation will stop 
when the total resistance against pull-out is in equilib- 
rium with Fp. Further increases in Fp are necessary to 
cause propagation of the debonding crack. 
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4.7. In ter fac ia l  f rac ture  energy  c r i te r ion  for  
d e b o n d i n g  

The debonding process can also be considered in 
terms of the energetics of failure [15, 104, 105]. 
Debonding crack propagation takes place when the 
fibre strain energy at the debonding crack front is 
higher than the fracture energy of the interface, G i. In 
order to maintain crack propagation, the fibre tensile 
stress, ~a, at the crack front must remain at 

= (18) 

The principle of conservation of energy was utilized 
in a study [48] of the debonding of steel cord from a 
rubber matrix. The total energy in the above pull-out 
system before debonding was assumed to consist of 
two parts: (i) the tensile strain energy in the un- 
reinforced part of the fibre (i.e. the region between 
position B and the fibre embedded end as in Fig. 1), 
and (ii) the stored energy in the loading device. When a 
length of steel cord had debonded, the corresponding 
volume of rubber was assumed [48] to be in simple 
tension. This gives rise to an increase in strain energy 
in the rubber. On the other hand, such an extension in 
the debonded region of the rubber will cause a drop in 
strain in the loading device and hence a reduction in 
the stored energy. The decrease in stored energy in the 
loading device was found to be exactly twice as large 
as the increase in Strain energy in the rubber. The 
difference in the above two energy terms was taken to 
be the fracture energy of the interface. The debonding 
force F d was independent of the embedded length, L, 
of the cord and was given by 

F 2 = 4rt(A m -- rcr2)rEmGi (19) 

Although the experimental results [48] revealed that 
F d did remain reasonably constant at long steel cord 
embedded lengths L, F d decreased with decreasing L 
for short steel cord embedded lengths (L < 15 ram, 
steel cord radius of 0.76 mm). 

A different approach was taken in a separate study 
[57] on the glass f ibre~poxy system. From a consid- 
eration of the balance of the total strain energy in the 
embedded fibre length and the interfacial energy, the 
debonding force F d was found to increase with in- 
creasing fibre embedded length L. The rate of increase 
in debonding force F d decreased as L increased such 
that 

Fa = 27zr(GiLEfm) 1/2 (20) 

where 

EfEm __ ~1/2 
Elm ---- (1 + vm)ln(rm/r)J 

and Vm is the Poisson's ratio of the matrix. According 
to the above model [57], the strain energy in the fibre 
embedded length should reduce to zero and the fibre 
should be in a stress-free state at complete debonding. 
However, contrary to the above predictions, the pull- 
out force did not drop to zero in the experiments [573. 
Hence, the analysis is suspect. 

The debonding process has also been considered 
[106] utilizing the Griffith-type criterion for crack 

growth. Such studies revealed two distinct situations. 
In a system with a long elastic fibre, steady crack 
growth would take place under a constant load. In 
systems with either a rigid fibre or a short embedded 
fibre length, once the debonding crack has initiated, 
it will propagate catastrophically until complete 
debonding. 

Other workers [107] have utilized different failure 
criteria for different failure modes. In the ductile mode, 
debonding was assumed to occur when the shear 
stress at the interface approached the shear strength of 
the matrix. The idea that the shear stress along the 
fibre was constant due to shear flow of the ductile 
matrix was also adopted [293. On the other hand, the 
energetic failure criterion was applied where failure 
was in the brittle mode. It was demonstrated [107] 
that increasing the fibre diameter could cause a trans- 
ition from ductile to brittle behaviour. A recent 
method [108] for selecting either a strength-based or 
fracture-based approach for the analysis of fibre 
debonding which assumes the existence of a transition 
zone has been proposed. This transition is assumed to 
exist between the elastic bonded zone and the debon- 
ded frictional zone and is postulated to be a region 
where breakdown of material takes place. 

4.8. Other  f ac to r s  w h i c h  a f fec t  d e b o n d i n g  
Uncharacteristic load displacement plots for the pull- 
out of a nickel wire from an epoxy matrix and from a 
cement-based matrix have been reported [56]. A typi- 
cal reported curve is shown in Fig. 4. Provided the 
wire is long enough, it can be seen from Fig. 4 that the 
typical rapid drop in pull-out force no longer exists. 
Instead, the pull-out curve exhibits a plateau of 
debonding force. This plateau corresponds to the 
yielding of the nickel wire. Since the maximum tensile 
stress is on the free length of the wire, plastic yielding 
will start there. After the free length has completely 
yielded and work-hardened, yielding will extend pro- 
gressively inward into the pull-out specimen. The 
radial contraction arising from longitudinal straining 
causes the wire to separate and lose contact with the 
matrix. The debonding crack front ahead of the 
yielded zone in the nickel wire will thus travel under a 
constant load, giving rise to the debonding plateau. 
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Figure 4 Load~tisplacement curve of a single fibre pull-out test in a 
nickel wire-epoxy system [48]. 
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The load required to debond a fibre, Fd, is also 
affected by a change in radial pressure on the fibre. An 
increase in Fd has been reported following the direct 
application of hydrostatic pressure on the matrix [54, 
60]. The interfacial shear strength approached the 
shear strength of the matrix [54] when the external 
hydrostatic pressure was high. 

4.9. Effect of la and Po on pull-out 
After complete debonding, the shape of the pull-out 
curve is governed by the interracial friction ~r. The 
value of zf is dependent on the radial pressure, P0, on 
the fibre and the interracial coefficient of friction It. If g 
is constant and the Poisson contraction of the fibre is 
insignificant, the pull-out force Fv which acts against 
friction is a linear function of the pull-out displace- 
ment x such that 

Fp 

where 

= 2 ~ r z f ( L  - x )  (21) 

"~e = PoP (22) 

In practice, the value of ~f should not change during 
pull-out. However, ~f has been reported [109] to 
decrease when an epoxy matrix was used. It has been 
suggested that this decrease may be due to the lower 
modulus of the deformed matrix and an increase in 
temperature during the pull-out process. If the matrix 
is metallic [29] and not polymeric in nature, work- 
hardening of the deformed matrix will lead to an 
increase in ~f. 

4.10. Effect of fibre shrinkage on pull-out 
Poisson shrinkage at the fibre emergent end becomes 
significant when the fibre tensile stress is high. Such 
high tensile stresses may develop in systems where the 
embedded fibre length is large and are more pro- 
nounced in ductile fibre systems. The fibre shrinkage 
leads to a decrease in the effective matrix shrinkage 
pressure on the fibre around the fibre emergent end. 
This effect was accounted for in some of models [93, 
110] which showed that the rate of increase in pull-out 
stress acting against friction decreased as the fibre 
embedded length increased. It is interesting to note 
that theoretically [56, 93], a fibre of indefinite (large) 
length can be extracted from the matrix provided that 
alignment is perfect. The Poisson contraction effect 
diminishes as pull-out progresses due to the lower 
force required for pull-out, and the consequent de- 
crease in tensile stress on the fibre. This is reflected 
[60, 92] in the increasing slope of the force- 
displacement plot. 

4.11. Determination of p and Po 
The value of zf can be determined from the slope of the 
frictional pull-out curve and Equation 21. If the 
Poisson contraction in the fibre is pronounced, the 
slope at x = L must be used instead, since at this point 
the fibre stress is zero and the Poisson effect becomes 
non-existent [93]. However, the task of separating vf 

into Po and g remains. This could be overcome by 
performing the single-fibre pull-out test while sub- 
jecting the matrix to different external hydrostatic 
pressures Pa [54, 60]. It has been shown that when Pa 
is less than the shear yield strength of the matrix, zf is 
a linear function of the external hydrostatic pressure 
and Equation 18 can be modified as 

"or = g(Po + Pa) (23) 

In Equation 23, la is given by the slope of the plot of 
zf against Pa, and P0 is the value of the intercept at 
Pa = 0. 

In contrast to the above technique which requires 
separate pull-out as well as hydrostatic pressure tests, 
a recent model [32, 58, 95] for determining la and Po 
utilizes data from only one set of pull-out tests. In this 
method, the value of la could be calculated from the 
additional energy expended in extracting a slightly 
tapered fibre, utilizing theoretical equations which 
accurately predicted and described the shape of the 
pull-out curve. The value for P0 could then be deter- 
mined by calculation using known relationships. This 
method can be applied to any system where a slightly 
tapered fibre test can be conducted. 

5. Conclusion 
This review has considered the interracial properties of 
a fibre-reinforced composite. The role of the interracial 
parameters in controlling the strength and toughness 
of the composite has been highlighted. The existing 
theories for predicting the stress distribution at the 
fibre-matrix interface and the applicability of these 
theories to real composite systems have been con- 
sidered. In particular, the single-fibre pull-out test has 
been considered in detail, and the use of this test for 
determining the interfacial parameters has been exam- 
ined. It is shown that the failure and pull-out process, 
and hence the properties of a fibre-reinforced com- 
posite, can be characterized in terms of its interracial 
parameters. 

It is apparent that although the existing theories can 
predict the general shape of the interracial stress dis- 
tribution, more remains to be done before the stress 
distribution in practical composite systems (which 
often have interphase regions between the fibre and 
the matrix) can be understood. Until the above aspects 
are properly understood, fibre-reinforced composites 
cannot be characterized properly and the full potential 
of composites as advanced materials will not be 
realized. 
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